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A novel radiant source for infrared calibration by
using a grooved surface
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A radiant source with a large aperture at 5—95 ◦C in the wavelength bands of 8—12 µm for calibrating
infrared imaging systems has been designed. The effective emissivity of its flat bottom with concentric
V-grooves was evaluated by the Monte-Carlo method whose correctness was tested and accuracy was
discussed. The structure of the source was completed by incorporating the simulation results with the
blackbody cavity effect. The source was certificated via an optical measurement system. The source can
provide a consistent radiant flux with temperature uniformity of ±0.1 ◦C over an area of diameter of φ80
mm.

OCIS codes: 200.0200, 040.3060, 120.0120, 110.3080.

As the fundamental to the definition of the interna-
tional practical temperature scale (IPTS), blackbody
cavities are used for the calibration of every kind of
radiation thermometers[1]. The accuracy of radiation
measurements of temperature is affected by blackbody
calibrations[2]. National research council of Canada
(NRC) established a calibration facility comprising both
variable-temperature and fixed-point blackbody cavities
covering the range from −50 to 2500 ◦C[3]. In 1995,
Fowlder built the third generation water bath blackbody
with high stability[4]. In 2001, Rice investigated five
blackbody sources which reached the consistency within
±0.1 ◦C by measuring their brightness temperature using
thermal-infrared transfer radiometer (TXR)[5]. With the
developments of infrared (IR) technologies such as radia-
tion thermometry, IR imaging, and IR detecting increas-
ing significantly, the need to establish standard radiant
sources with high quality becomes more important. The
source is used for calibrating IR imaging at 5—95 ◦C
in the wavelength bands of 8—12 µm. Minimum resolv-
able temperature difference (MRTD) sensitivity of the
IR imaging system requires that the source has high uni-
formity, stability, and resolution. The shape of a cavity
which is chosen for a particular application is determined
by physical suitability and ease of construction[1]. Black-
body cavities with simple shapes and small apertures are
often suitable for the case of high temperature range,
but not for IR imaging. Some radiant sources with com-
plex structures such as blackbody cavities with groove
cylinders[6] have been developed for applications in low
temperature ranges and far IR wavelength bands. The
flat bottom of the source was processed into concentric
V-grooves to increase its intrinsic emissivity.

Bedford method[7] which is available for analyzing
many kinds of structures has become one of the most
effective precise methods in blackbody cavity theory. In
2001, Caola applied it to study a non-isothermal spherical
cavity[8]. Because the precise method involves calculating
angle factors[1] between surfaces, it is difficult to adopt
it to investigate the V-groove surface. Monte-Carlo tech-

niques have been widely used in optical radiometry and
blackbody cavity analysis[6,9]. Therefore, the Monte-
Carlo method was used to analyze the bottom of the
source. Analysis of the ray tracing is shown in Fig.
1 within which is the section through the source. For
groove k which is formed by two cones, concave con1 and
convex con2, the radiation either incident on or emitted
by groove k is taken to consist of a very large number of
discrete rays of energy. The trajectory of each ray within
groove k due to multiple reflections is taken to be gov-
erned by the laws of probability. The history of each ray
is then traced until the ray either is absorbed or leaves
groove k. The angle of emission, whether absorption or
reflection occurs at each contact point, and the angle of
each reflection are all chosen at random with cognizance
being taken of the proper weighting for each event. The
effective emissivity of groove k(εa(k)) will converge to
the true value as the number of traced rays increases.

When we consider the reflectance of an incident ray by
the spectral-bidirectional reflectance distribution func-
tion (BRDF)[10], the complexity of BRDF is evident.
However, the condition can be simplified by noting
that surfaces may be idealized as isotropically diffuse or

Fig. 1. Ray tracing analysis of the surface with concentric
V-grooves.
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perfectly specular[1]. If the surface is diffuse, the proba-
bility of zenith angle θ of an emitted ray (or a reflected)
is

P (θ) =

θ∫

0

2 sin θ cos θdθ = sin2 θ. (1)

Since the function rand( ) from Visual C++ has a bet-
ter uniformity in comparison with the common modulo
method[11], it is chosen as the random generator in the
Monte-Carlo simulation. The procedures of Monte-Carlo
simulation for V-groove k are as follows.

The first procedure is to choose either con1 or con2 on
which ray i is emitted, to calculate the position (a) of the
ray according to the random sampling, and to determine
the angles (θ, ϕ) of the ray. If the ray is on con1, the
simulation flow goes to the second procedure, otherwise,
to the third procedure.

The second procedure is to judge whether the ray
crosses con2 or con1. If it crosses neither con2 nor con1,
the ray flies out of the groove, then the general energy ra-
diates out (Eout) accumulates, the flow goes to the fourth
procedure.

The equation of the ray is (in coordinates O1X1Y1Z1)
{

z2
1 = ctg2θ(x2

1 + y2
1)

y1 = x1tgϕ
. (2)

The con2 equation is

x2
2tg

2ω = y2
2 + z2

2 . (3)

The transformation between O2X2Y2Z2 and O1X1Y1Z1

is
{

x2 = x1 cos ω + z1 sinω − b
z2 = −x1 sinω + z1 cos ω − atgω

. (4)

From Eqs. (2) and (3), we obtain

Ax2
1 + Bx1 + C = 0. (5)

The cross point x1 is the root of it.
Pursuant to Eq. (4), x1 is transformed into x2. If

L − a − b ≥ x2 ≥ L − l − a − b, the ray crosses con2,
otherwise it may cross con1. If the ray is reflected at the
cross point, the position is taken down and the angles
(θ, ϕ) of the reflected ray are generated, the flow goes to
the third procedure or the second procedure according to
the cross point is on either con2 or con1 respectively.

The third procedure is to judge whether the ray on
con2 crosses con1, if the ray crosses con1 at x (x =
x1 cos ω + z1 sinω + a), then L ≥ x ≥ L − l. If it is
reflected at the cross point, its position is taken down,

the reflected angles (θ, ϕ) are generated, the flow goes
back to the second procedure, otherwise, it is absorbed,
then goes to the fourth procedure. If it does not cross
con1, Eout accumulates, the flow goes on to the fourth
procedure.

The fourth procedure is to increase the ray number,
if it has not reached the total sampling number Ns, the
flow returns back to the first procedure; otherwise the
simulation stops to calculate the effective emissivity of
groove k

εa(k) = ε · Eout · (Acon1 + Acon2)/(Ar(k) ·Ns), (6)

where Ar(k) = π(R2
k+1 −R2

k).
Because εa(k) is determined statistically after trac-

ing all the rays, the simulated results are affected sig-
nificantly by factors such as the Monte-Carlo model, ray
tracing, sampling numbers, random sampling methods,
the uniformity of random number generator etc. Only if
the correctness is proved can the Monte-Carlo method be
applied to perform the simulation. The correctness test
was completed by comparing the result of the Monte-
Carlo method with that of Bedford method for the same
center cone of the surface. The errors between the two
methods in every case are limited in 0.0004, usually
around 0.0001 or 0.0002. Table 1 shows the correctness
test calculation, Ns = 2× 107, ε is stuff emissivity.

The Monte-Carlo program was compiled and run un-
der Visual Studio.net2003 environment. 30 grooves of a
round piece surface were simulated, as shown in Fig. 2
(ε = 0.95, ω = 30◦, l = 3 mm). The simulation results
fluctuate severely when Ns is small, and smooth gradu-
ally with Ns increasing. Since the results converge very
slowly, the sampling number should be more than 2×107

to keep the deviation within 0.0001. In order to reduce
the computing time, angle θ can be determined by the
rejection sampling[11], θ = r1π/2 when r2 < sinπr1 (r1,
r2 are random numbers).

Fig. 2. Results of Monte-Carlo simulation.

Table 1. Correctness Test Calculation

ω ε 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93

22.5◦
Precise 0.86780 0.87963 0.89121 0.90256 0.91368 0.92458 0.93526 0.94574 0.95602 0.96611

Monte-Carlo 0.86742 0.87935 0.89098 0.90224 0.91380 0.92453 0.93513 0.94577 0.95612 0.96605

30◦
Precise 0.84580 0.85940 0.87275 0.88586 0.89875 0.91141 0.92386 0.93611 0.94815 0.95999

Monte-Carlo 0.84554 0.85939 0.87262 0.88561 0.89881 0.91140 0.92353 0.93621 0.94800 0.96000
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Fig. 3. Source effective emissivity distribution.

The values of εa(k) become slightly lower from the cen-
ter to the edge along radium direction. As shown in Fig.
3, curve V represents the emissivity distribution of the V-
groove surface, and curve B is the emissivity distribution
of the flat bottom of a cylinder cavity. A compensation
for εa(k) is made by combining the V-grooves surface
with a short cylinder because of the blackbody cavity
effect. The optimal design of the source structure was
implemented by the calculation of the local effective
emissivity of the bottom whose uniformity should be
within 0.01 in the large scope. Therefore, the radiation
of the source can be uniformly distributed over 80% of
the bottom area when Lc = D, shown as curve VB.

Cesium and sodium filled heat pipes were used for large
aperture sources[3]. The heating system of the source is
realized by a heptane filled heat pipe, which keeps the
temperature homogeneity of the bottom surface within
±0.01 ◦C when the source is uprightly installed. There
is a gold coated reflecting mirror arranged in 45◦ on the
top to convert the radiation from the vertical direction
into the horizontal direction[12].

The characteristics of the source were not only theo-
retically analyzed, but also tested by the scheme of the
optical system, as shown in Fig. 4.

The source is laid on the focal plane of the parabolic
mirror M1 (an off-axis parabola is used). The radiation
coming out of the source is reflected by the mirror M2,
changed into parallel rays by M1, and then it passes
through the filter which limits the light within the band
width of 8—12 µm. The incoming radiation is scanned
by a mechanically rotating mirror, and it passes a chop-
per which eliminates the ambient disturbance then onto
a parabolic mirror, which focuses the modulated alter-
nate beam upon a detector of mercury-cadmium-telluride
(HgCdTe) photoconductor[13] which is sensitive to far
IR radiation (3—14 µm). The area of the bottom with

Fig. 4. Arrangement for the radiant source testing.

Fig. 5. Scanning image of the radiant source.

diameter of φ80 mm was scanned. The image of the
radiant source is shown in Fig. 5, and the standard de-
viation of temperature distribution (SD) is within ±0.04
◦C. Thus we should expect that 95% of the data would
be within 1.96SD. The results show that the radiant tem-
perature uniformity and stability are within ±0.1 ◦C.

In conclusion, design of the source is implemented by
means of the Monte-Carlo analysis, the blackbody cavity
theory, and the heat pipe technique etc.. The high sen-
sibility, portability, and convenient operation make the
source be appropriate for calibrating online. The exper-
iment shows that the results tested fit the theoretical
analysis well. In practical application, the source can
provide homogenous and stable radiation and is an ideal
standard source in IR imaging such as the visualization
in dark environment and satisfies the requirement.
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